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Abstract. As semantic graph database technology grows to address
components ranging from extant large triple stores to SPARQL endpoints
over SQL-structured relational databases, it will become increasingly im-
portant to be able to bring high performance computational resources to
bear on their analysis, interpretation, and visualization, especially with
respect to their innate semantic structure. Our research group built a
novel high performance hybrid system comprising computational capa-
bility for semantic graph database processing utilizing the large multi-
threaded architecture of the Cray XMT platform, conventional clusters,
and large data stores. In this paper we describe that architecture, and
present the results of our deploying that for the analysis of the Billion
Triple dataset with respect to its semantic factors, including basic prop-
erties, connected components, namespace interaction, and typed paths.
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1 Introduction

As semantic graph database (SGD) technology grows to address components
ranging from extant large triple stores to SPARQL endpoints over SQL-structured
relational databases, it will become increasingly important to be able to bring
high performance computational resources to bear on their analysis, interpreta-
tion, and visualization, especially with respect to their innate semantic structure.

Prior Billion Triple Challenge (BTC) submissions4 have explored many in-
teresting and provocative topics, ranging from query rewriting to mobile ap-
plications, ontology hijacking to navigation. But the ability to understand the
semantic structure of a vast SGD awaits both the development of a coherent
methodology and the high-performance computational platforms within which
to exercise such methods.

A number of factors make SGD problems different from other large network
science problems, perhaps most prominently their formal nature as structures
which are not only large, but have high data complexity in that they are typed
? Corresponding author: Cliff Joslyn, Pacific Northwest National Laboratory,
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and directed networks: types on nodes and links carry the specifically semantic
information of their assertions, while the directionality of the links indicates
the argument structure of the links, seen as predicates. But standard methods
in network science (e.g. connected components, minimum path, centrality, etc.)
have been developed for networks of high size but low data type complexity, that
is for untyped, and undirected graphs. Where such methods ignore semantics in
order to reduce complexity, it is becoming increasingly important to develop
methods that tackle high data complexity directly.

To address these issues, our research group has built a novel high perfor-
mance hybrid system comprising computational capability for semantic graph
database processing utilizing high capacity standard servers together with the
large multi-threaded architecture of the Cray XMT platform. We have brought
these capabilities to bear on the BTC 2010 dataset (BTC10).

In this paper we describe these systems and our work to interrogate BTC10
with respect to its large-scale semantic structure. We first describe our hybrid
computational platform and the Cray XMT machine at its core. We then provide
base statistics on BTC10 node and link types and namespaces, including factor-
ing the ontological semantic meta-data from the rdf, rdfs, and owl namespaces.
We then analyze the connected component structure of BTC10, and finally fac-
tor BTC10 according to network motifs which are short, typed paths, specifically
link type bigrams and trigrams. In this way the inherent semantic structure of
BTC10 is revealed to users.

2 High-Performance Computational Architecture

Our high-performance computing platform includes a Cray XMT and a high-end
server. We use the high-end server—with 48 GBs of memory and two quad-core
2.96 GHz Intel Xeon CPUs—to perform initial investigations into the BTC10
using both leading commercial triple store software and custom software to per-
form scans of the data with regular memory accesses.

But for problems, such as graph problems, which are dominated by unpre-
dictable memory references, that is, with almost no locality, the Cray XMT
can significantly outperform distributed-memory parallel architectures based on
commodity processors. The XMT also has a significant amount of shared mem-
ory (1024 GBs) so that the entire graph can fit into memory at once, obviating
the usual requirement of paging data into limited RAM.

Our Cray XMT has 128 Threadstorm processors, each of which supports
128 thread contexts, so that each Threadstorm can be viewed as a 128-way
hyperthreaded processor. For unpredictable memory reference patterns, cache
memory is ineffective. To overcome the latency of memory references with no
cache hits, programs are designed and written for high amounts of concurrency.
Thus at any time, each of the Threadstorms is likely to have at least one of its
128 threads ready to compute while other threads await arrival of data from
memory. This architecture is designed for running programs with large memory
footprints and 12,000 threads in a single program. With 1TB of shared memory,
we were not memory-constrained in our processing of the BTC10 data.



The amount of parallelism in applications running on the XMT can only be
supported by a platform with fine-grain synchronization support in the hardware
and runtime systems. It is common that fundamental data structures need to
be specialized to run on a system with this much concurrency. Members of our
team have recently developed hashing data structures that are used extensively
in our BTC work [4].

Our productivity in exploring BTC10 on the Cray XMT was facilitated by
two open source libraries that specifically target the Cray XMT: the Multi-
Threaded Graph Library (MTGL)5 and the Semantic Processing Executed Effi-
ciently and Dynamically (SPEED-MT)6 library. The first is a set of algorithms
and data structures designed to run scalably on shared-memory platforms such
as the XMT. The second is a novel scalable Semantic Web processing capability
being developed for the XMT.

We used these two libraries to translate the verbose BTC10 data into 64-bit
integers to increase computational efficiency and reduce the memory footprint.
The XMT’s large global memory allowed us to hash each URI, blank node, or
literal into a shared hash table and assign each a unique integer identifier. The
process of translating from strings to integers took a total of 1h 35m, with 75%
of the time being file I/O.

3 BTC10 Base Statistics
We acquired BTC10 and verified it as an RDF graph with 3.2B 〈s, p, o, q〉 quads,
which we projected to 1.4B unique 〈s, p, o〉 triples, ignoring the quad field (useful
for provenance and other operations but not for analyzing the main content). We
identified duplicates by hashing the triples, now of integers, into a shared hash
table, in 10 min. 37 s.. The entire process of converting the data from string to
integers, removing the quad field, and deduplicating, compressed BTC10 from
624 GBs to 32 GBs.

Abbreviation Prefix
bestbuy: http://products.semweb.bestbuy.com/company.rdf
cyc: http://sw.cyc.com/CycAnnotations v1
dbin: http://www.dbin.org/SWDesktopIntegration
dg: http://data-gov.tw.rpi.edu/vocab/p/
dgtwc: http://data-gov.tw.rpi.edu/2009/data-gov-twc.rdf
fao: http://www.fao.org/aims/aos/languagecode.owl
foaf: http://xmlns.com/foaf/0.1/
geo: http://rdf.geospecies.org/ont/geospecies
mindswap: http://owl.mindswap.org/2003/ont/owlweb.rdf
ontoware: http://smw.ontoware.org/2005/smw
owl: http://www.w3.org/2002/07/owl
po: http://www.proteinontology.info/po.owl
purl: http://purl.org/dc/elements/1.1/
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns
rdfs: http://www.w3.org/2000/01/rdf-schema
sioc: http://rdfs.org/sioc/ns
skos: http://www.w3.org/2004/02/skos/core
smwiki: http://semantic-mediawiki.org/swivt/1.0
sniff: http://www.w3.org/2000/10/swap/util/sniffSchema
swoogle: http://daml.umbc.edu/ontologies/webofbelief/1.4/swoogle.owl
swvocab: http://www.w3.org/2003/06/sw-vocab-status/ns

Table 1. Prefix abbreviations used.

The namespace abbreviations used below are shown in Table 1. Below we only
show selected high frequency objects below. See http://cass-mt.pnl.gov/btc2010/stats
for complete tables.
5 https://software.sandia.gov/trac/mtgl
6 https://software.sandia.gov/trac/MapReduceXMT



We measured BTC10’s very low graph density of 1.8 ×10−8 links/node2.
The left of Table 2 shows the distribution of the top 20 of the 58.6M non-blank
subjects present, comprising only 0.085% of all 960.7M non-blank subjects; the
right shows the distribution of the top 20 of the 95.5M non-blank, non-literal
objects present, comprising 29.3% of all 429.5M non-blank, non-literal objects.

Note the far smaller number of subjects compared to objects, indicating a
much larger in-degree of objects to out-degree of subjects. The most prevalent
subjects are “containers”, each (e.g. Bestbuy) pointing to a single category of
a large number of objects (e.g. Offers). The most prevalent objects are types,
virtually all (e.g. foaf:person) the destination of rdf:type predicates.

Table 3 shows the top 20 of the 95.2K link types present, comprising 37% of
all 1.4B link instances present. Fig. 1 shows the top 20 edge counts per node types
in BTC10 (literals omitted). For example we have about 70M triples with the
predicate foaf:known connecting subject and object of type foaf:person, the
highest count. Node labels are node types, indicated as objects of the rdf:type
predicate. Many nodes in the dataset have more than one type in which case
they contribute to more than one edge count and node label in the figure.

Effectively, Fig. 1 begins to show the statistical structure of the “extant on-
tology” of BTC10. Extending beyond the top 20 edges quickly becomes visually
difficult, see http://cass-mt.pnl.gov/btc2010/top218links.pdf for a figure
showing the top 218 edges, comprising all the edges with counts ≤ 100K.

s o

s K % o M %
bestbuy:BusinessEntity BestBuy 413.6 0.043% xmlns.com/foaf/0.1/Person 68.39 15.921%
data-gov.tw.rpi.edu/raw/91/index.rdf#me 148.0 0.015% xmlns.com/foaf/0.1/OnlineAccount 10.15 2.363%
data-gov.tw.rpi.edu/raw/90/index.rdf#me 54.0 0.006% rdf:Statement 6.06 1.412%
sws.geonames.org/2635167/ 16.1 0.002% xmlns.com/foaf/0.1/Document 4.67 1.086%
sws.geonames.org/4862182/ 15.9 0.002% purl.org/rss/1.0/item 4.65 1.082%
sws.geonames.org/5279468/ 15.8 0.002% dgtwc:DataEntry 4.00 0.932%
sws.geonames.org/6255149/ 15.8 0.002% purl.org/dc/dcmitype/Text 3.22 0.750%
sws.geonames.org/5037779/ 15.8 0.002% www.w3.org/2003/01/geo/wgs84 pos#Point 2.45 0.570%
sws.geonames.org/5001836/ 15.8 0.002% rdf.opiumfield.com/lastfm/spec#Neighbour 2.36 0.551%
www.livejournal.com/interests.bml?int=??????? 12.0 0.001% purl.org/ontology/mo/Performance 2.27 0.529%
www.livejournal.com/interests.bml?int=?????? 11.2 0.001% purl.org/NET/c4dm/timeline.owl#Interval 2.26 0.525%
www.livejournal.com/interests.bml?int=???????? 10.9 0.001% purl.org/NET/c4dm/event.owl#Event 2.26 0.525%
www.w3.org/TR/2001/REC-smil20-20010807/ 9.3 0.001% www.geonames.org/ontology#Feature 2.21 0.513%
www.livejournal.com/interests.bml?int=????? 9.0 0.001% www.last.fm/ 1.67 0.389%
www.livejournal.com/interests.bml?int=????????? 8.8 0.001% xmlns.com/wordnet/1.6/Person 1.66 0.386%
dowhatimean.net/2010/01/prefixcc-
mkii#comment-

8.8 0.001% xmlns.com/foaf/0.1/chatEvent 1.66 0.386%

www.nettrust-site.net/fdic 8.4 0.001% purl.uniprot.org/core/classifiedWith 1.56 0.363%
www.fao.org/aims/aos/languagecode.owl#I 7.8 0.001% www.w3.org/2000/01/rdf-schema#seeAlso 1.54 0.358%
wow.sfsu.edu/ontology/rich/FoodWebs.owl# 7.7 0.001% purl.uniprot.org/core/Domain Assignment Statement 1.50 0.349%
LittleRockLake

www.fao.org/aims/aos/languagecode.owl#L 7.2 0.001% purl.org/goodrelations/v1#ProductOrServiceModel 1.46 0.341%

Table 2. (Left) Top 20 subjects, count (thousands), and %; (Right) top 20 objects,
count (millions), and %.

p Count (M) %
rdf:type 152.8 10.7%
rdfs:seeAlso 86.7 6.1%
foaf:Person 71.6 5.0%
foaf:OnlineAccount 70.5 4.9%
rdf:Statement 15.3 1.1%
foaf:Document 11.5 0.8%
rss:item 10.8 0.8%
dgtwc:DataEntry 10.8 0.8%
dcmitype:Text 10.4 0.7%
geo:Point 10.4 0.7%
opmspec:Neighbour 10.4 0.7%
mo:Performance 8.4 0.6%
timeline:Interval 8.3 0.6%
event:Event 8.2 0.6%
geonames:Feature 8.0 0.6%
wordnet:Person 7.5 0.5%
foaf:chatEvent 6.1 0.4%
core:Domain Assignment Statement 6.1 0.4%
gr:ProductOrServiceModel 6.1 0.4%
swrc:Person 5.6 0.4%

Table 3. Top 20 predicates (millions).



Fig. 1. Top 20 edge types, and the node types they connect.

Namespaces which deal with “semantic meta-data”, or ontological typing
information, are generally prominent. Specifically the rdf:, rdfs:, and owl:
namespaces comprise 20.0% of all link instances. A histogram of the top 10
is shown in Table 4. These are dominated by rdf:type, rdfs:seeAlso, and
rdfs:label, with rdf:type alone comprising 10.7%.

p1 Count (M)
rdf:type 152.8
rdfs:seeAlso 86.7
rdfs:label 10.8
rdf:subject 6.1
rdf:object 6.1
rdf:predicate 6.1
owl:sameAs 4.7
rdfs:comment 4.1
rdfs:subClassOf 1.7
rdfs:isDefinedBy 1.3

Table 4. Top ten semantic meta-data link types (millions).

Reification in particular is prominent in BTC10. There are 4.4M edges of
predicate rdf:subject between rdf:statement and core:protein, the main
source. The absence of the rdf:object predicate in Fig. 1 indicates that objects
are spread among many types, and/or are to literals. Overall, that rdf:subject,
rdf:object, and rdf:predicate each have 6.1M instances precisely, comprising
a clear portion of BTC10 that is reified.

4 Namespace Interaction

To understand the relationships between the sources which generated the dataset,
we explore n summary metric for linkages among namespaces. Projects like the
Linking Open Data initiative and the Comprehensive Knowledge Archive Net-
work rely on manual attribution and curation of provenance. In BTC10 we must
use an approximation method for attributing triples to sources.



We call triples “linked” when two or more of the subject, predicate, or ob-
ject map to different fully-qualified domain names (FQDNs). Table 5 shows the
sources of linked data for the top 50 FQDNs as broken down by pair-wise posi-
tion relationships. This data shows that a majority of triples in the BTC data
use at least one entity created by a different organization, but most of this in-
terlinking stems from the reuse and sharing of predicates. This entire process,
including FQDN extraction, individual-, and pair-wise relationship counts, was
computed in just over half an hour using 64 processors on the XMT.

Relationship Distinct FQDNs Identical FQDNs Literal or Blank
Subject-Predicate 1976.0 M 62% 464.9 M 14% 725.1 M 22%
Subject-Object 528.9 M 16% 1997.5 M 63% 620.3 M 19%
Predicate-Object 1313.5 M 41% 1776.8 M 56% 59.5 M 1%

Table 5. Sources of cross-linking by entity position
5 Connected Components
In the previous section we discussed how prefixes can be used to understand
the interconnectedness of the BTC graph. In this section we discuss a more
graph theoretic approach: connected components. This approach is used to find
the set of maximal connected subgraphs within a larger graph. For instances
where there is one large connected component that encompasses the majority of
vertices, a technique that works well is to first run breadth-first search starting
at the node with the largest out degree to find the large component. We then
find the remaining components by using a “bully-strategy” [1].

To pose the BTC data in terms of connected components, we treat subjects
and objects as vertices in a graph, and the predicates as edges connecting them.
However, connected components is generally only applied to undirected graphs,
so we ignore the directionality of the predicates. Running connected components
on BTC, we find that there are 208.3K components, with a giant component of
278.4K vertices, or 99.8% of the total.

To gain a better understanding of the structure of the graph, we experimented
by iteratively removing edge types. We first removed ontological information
by incrementally deleting the top 10 rdfs: predicates and the top seven owl:
predicates. We also examined deleting in stages the overall top 25 predicate
types. However, while we did see an increase in the number of components, a
large component continued to dominate, rarely straying below 90% of the graph.
In fact the process was more akin to shedding the leaf nodes of the graph, as the
order of the graph diminished to half of the original.

This process did illuminate several large jumps in the number of components
when certain edges were removed. Deleting only these predicate types, namely
rdf:type, rdfs:subClassOf, rdfs:definedBy, owl:imports, and foaf:knows,
we arrived at 9.0M components with the largest comprising 81.1% of the induced
graph, while only losing about 1% of the original vertices.

Connected components on the XMT achieved 46x speedup from 1 to 128
processors, with the computation time for 128 processors being 10.3 seconds.

6 Typed Path Structures
As noted above, SGD structures are formally represented as typed, directed
networks. Where network analysis is frequently done in terms of paths connecting



nodes, here we need to deal with directed paths which are themselves typed,
casting a path type as the vector of the link types which comprise the path.

We are interested in seeking the path types of the long paths which occur with
high frequency. We hypothesize these as the semantic structures which carry a
large portion of the semantic information in the network in terms of interacting
link types. Towards this end, we first consider the short paths which make them
up, that is the chains of two and three link types which are connected linearly.
These small, linear graph motifs are link-type n-grams for n = 2, 3.

We hypothesize that such information will be important not only for users
to understand the semantic structure of BTC10, but for future developments to
exploit this semantic structure to provide targeted inferential support, and to
optimize search and visualization methods to the specific ontology, connectivity,
and distributional statistics of datasets and queries.

Our bigram and trigram analysis involved filtering the ontological metadata
link types, specifically the rdf:, rdfs:, and owl: namespaces. Table 6 shows
the distribution of the top 20 bigrams of the 824.6K consecutive link type pairs,
comprising 86.3% of all 8.1B consecutive link pairs present; and Table 7 shows
the distribution of the top 20 trigrams of the 5.6M consecutive link type triples,
comprising 29.6% of all 102.8B link triples.

p1 p2 Count (M) %
dgtwc:isPartOf dgtwc:partial data 2912.13 35.8%
foaf:interest purl:title 2036.23 25.0%
gs:isUnknownAboutIn gs:hasUnknownExpectationOf 516.19 6.3%
gs:isExpectedIn gs:hasExpectationOf 142.62 1.8%
gs:isUnknownAboutIn gs:hasLowExpectationOf 139.13 1.7%
gs:isUnexpectedIn gs:hasUnknownExpectationOf 139.13 1.7%
gs:isUnknownAboutIn gs:hasExpectationOf 132.04 1.6%
gs:isExpectedIn gs:hasUnknownExpectationOf 132.04 1.6%
gs:isUnexpectedIn gs:hasLowExpectationOf 124.14 1.5%
sioc:follows sioc:follows 116.87 1.4%
gs:isUnexpectedIn gs:hasExpectationOf 84.12 1.0%
gs:isExpectedIn gs:hasLowExpectationOf 84.12 1.0%
foaf:knows foaf:knows 81.69 1.0%
foaf:primaryTopic foaf:maker 77.68 1.0%
foaf:knows foaf:nick 68.93 0.8%
fao:hasScope fao:isScopeOf 60.16 0.7%
fao:hasType fao:isTypeOf 52.24 0.6%
foaf:accountServiceHomepage purl:title 41.69 0.5%
foaf:knows foaf:holdsAccount 39.26 0.5%
foaf:based near gs:hasUnknownExpectationOf 36.16 0.4%

Table 6. Top 20 link type bigrams (millions).

Note the prominence of low-frequency predicates in both the bigrams and
trigrams. For example, consider the most frequent bigram 〈dgtwc:isPartOf,
dgtwc:partial data 〉, with a frequency of 35.8%. The constituent predicates
have frequencies of 0.0038% and 0.027% respectively, far below the top 20 shown
in Table 3. If these were independent, the expected joint frequency would be
minuscule. This pattern of a vast inflation of expected probability is a general
phenomenon, indicating the powerful role that these small sequence motifs play
in the semantics of BTC10.

7 Appendix

Concerning the minimal requirements of the Billion Triple Challenge, in this
work we focused explicitly on analyzing the BTC10 data set, and in providing
a collection of services to help users analyze their inherent semantic structure.



p1 p2 p3 Count (B) %
sioc:follows sioc:follows sioc:follows 10.85 10.6%
foaf:knows foaf:knows foaf:knows 2.19 2.1%
gs:hasUnknownExpectationOf gs:isUnknownAboutIn gs:hasUnknownExpectationOf 2.15 2.1%
gs:isUnknownAboutIn gs:hasUnknownExpectationOf gs:isUnknownAboutIn 2.15 2.1%
gs:isUnknownAboutIn gs:hasUnknownExpectationOf foaf:isPrimaryTopicOf 1.98 1.9%
gs:isUnknownAboutIn gs:hasUnknownExpectationOf skos:closeMatch 1.37 1.3%
rdf:predicate http://sw.nokia.com/VOC-1/partOf http://sw.nokia.com/VOC-1/term 1.32 1.3%
foaf:primaryTopic gs:isUnknownAboutIn gs:hasUnknownExpectationOf 1.08 1.1%
skos:closeMatch gs:isUnknownAboutIn gs:hasUnknownExpectationOf 0.78 0.8%
gs:hasUnknownExpectationOf gs:isUnknownAboutIn gs:hasExpectationOf 0.64 0.6%
gs:isExpectedIn gs:hasUnknownExpectationOf gs:isUnknownAboutIn 0.64 0.6%
gs:hasUnknownExpectationOf gs:isUnknownAboutIn gs:hasLowExpectationOf 0.64 0.6%
gs:isUnexpectedIn gs:hasUnknownExpectationOf gs:isUnknownAboutIn 0.64 0.6%
gs:isExpectedIn gs:hasExpectationOf foaf:isPrimaryTopicOf 0.62 0.6%
gs:isUnknownAboutIn gs:hasLowExpectationOf foaf:isPrimaryTopicOf 0.62 0.6%
gs:isUnknownAboutIn gs:hasExpectationOf foaf:isPrimaryTopicOf 0.61 0.6%
gs:isUnknownAboutIn gs:hasLowExpectationOf gs:isUnexpectedIn 0.56 0.5%
gs:hasLowExpectationOf gs:isUnexpectedIn gs:hasUnknownExpectationOf 0.56 0.5%
gs:isUnexpectedIn gs:hasLowExpectationOf foaf:isPrimaryTopicOf 0.53 0.5%
gs:isUnknownAboutIn gs:hasUnknownExpectationOf gs:isExpectedIn 0.52 0.5%

Table 7. Top 20 link type trigrams (billions).

We used no additional data in performing this work. We have a real-time7 end-
user application available to show the results of our namespace, link-type, and
link-type n-gram filtering in the context of connected component analysis.

Concerning the additional desirable features, our work goes substantially
beyond storage or retrieval of the triples to analyze the semantic structure of
BTC10. Our use of a high-performance platform aims explicitly at scalable re-
sults, as demonstrated in our performance results detailed in the text above.
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